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Singular Value
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❑ 𝑆𝑚×𝑛 Non-Square!!

❑ 𝜎𝑖 = 𝜆𝑖 𝜆𝑖 ∈ 𝜎 𝑆𝑇𝑆 , 𝑖 = 1,… , 𝑛

❑ 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑚−1 ≥ 𝜎𝑚

Singular value and eigenvalue
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Example

𝑆 =
4 11 14
8 7 −2

𝑆𝑇𝑆 =
80 100 40
100 170 140
40 140 200

⇒ 𝜆 𝑆𝑇𝑆 = 360, 90, 0

⇒ ൞
𝜎1 = 360 = 6 10

𝜎2 = 90 = 3 10
𝜎3 = 0



Singular value and eigenvector
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Proof?

Theorem
𝑣1, … , 𝑣𝑛 are orthonormal eigenvectors of matrix 𝑆𝑇𝑆 then singular values of 

matrix 𝑆 are norm of 𝑆𝑣𝑖 vectors:
𝑆𝑣𝑖 = 𝜎𝑖



Singular value and eigenvector
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Example

𝑆 =
4 11 14
8 7 −2

→ 𝑆𝑇𝑆 =
80 100 40
100 170 140
40 140 200

→ 𝜎1 = 360, 𝜎2 = 90, 𝜎3 = 0

𝑣1 =

1/3
2/3
2/3

, 𝑣2 =

−2/3
−1/3
2/3

, 𝑣3 =

2/3
−2/3
1/3

𝑆𝑣1 =
18
6

⇒ 𝑆𝑣1 = 182 + 62 = 𝜎1

𝑆𝑣2 =
3
−9

⇒ 𝑆𝑣2 = 32 + (−9)2= 𝜎2

𝑆𝑣3 =
0
0

⇒ 𝑆𝑣3 = 0 = 𝜎3



Singular value and Rank
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Theorem

𝑣1, … , 𝑣𝑛 are orthonormal eigenvectors of matrix 𝑆𝑇𝑆 and 𝑆 has 𝑟 non-zero 
singular value:

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0, 𝜎𝑟+1 = ⋯ = 𝜎𝑛 = 0

{𝑺𝒗𝟏, … , 𝑺𝒗𝒓} is a orthogonal basis for range of 𝑺

𝑟𝑎𝑛𝑘(𝑆)=𝑟

Rank of Matrix = Number of nonzero singular values

How to find {𝒖𝟏, … , 𝒖𝒓} is a orthonormal basis for range of 𝑺



SVD
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❑ Given any mn matrix A, algorithm to find matrices U, V, and ∑
such that (always exists)

❑ 𝐴 = 𝑈Σ𝑉𝑇 𝐴 = 𝑈Σ𝑉∗

𝑼 is mm and orthogonal (always real)

∑ is mn and diagonal with non-negative (always real) called singular     
values.  

𝑽 is nn and orthogonal (always real)

❑ Columns of U are eigenvectors of 𝐴𝐴𝑇 (called the left singular vectors).

❑ Columns of V are eigenvectors of 𝐴𝑇𝐴 (called the right singular vectors).

❑ The non-zero singular vectors are the positive square roots of non-zero 
eigenvalues of 𝐴𝐴𝑇or 𝐴𝑇𝐴.

Singular Value Decomposition (SVD)
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❑ Generalization of the spectral decomposition that applies to all 
matrices, rather than just normal matrices.

❑ Applications:
o Compute the size of a matrix (in a way that typically makes more 

sense than norm)
o Provide a new geometric interpretation of linear transformations

o Solve optimization problems

o Construct an “almost inverse” for matrices that do not have an 
inverse.

SVD Introduction
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SVD Comparison
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SVD Diagonalization Spectral Decomposition

applies to every single 

matrix (even rectangular 

ones).

only applies to matrices 

with a basis of 

eigenvectors

only applies to normal 

matrices

matrix ∑ in the middle of 

the SVD is diagonal (and 

even has real non-

negative entries)

do not guarantee an 

entrywise non-negative 

matrix

do not guarantee an 

entrywise non-negative 

matrix

It requires two unitary 

matrices U and V

only required one 

invertible

matrix

only required one unitary 

matrix



❑ The ∑𝑖 are called the singular values of A

❑ If A is singular, some of the ∑𝑖 will be 0

❑ In general rank(A) = number of nonzero ∑𝑖

❑ SVD is mostly unique (up to permutation of singular values, or if 
some ∑𝑖 are equal)

SVD
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❑ The SVD is a factorization of a m x n matrix into 
𝐴 = 𝑈Σ𝑉𝑇

Where U is a m x m orthogonal matrix, 𝑉𝑇 is a n x n orthogonal matrix and Σ is a m x 
n diagonal matrix.

For a square matrix (m=n): 

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

𝜎1
⋱

𝜎𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

𝜎1
⋱

𝜎𝑛

⋮ ⋯ ⋮
𝑣1 ⋯ 𝑣𝑛
⋮ ⋯ ⋮

𝑇

SVD for Square Matrix
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𝑆𝑣1 … 𝑆𝑣𝑟 0 … 0 𝑚×𝑛 = 𝜎1𝑢1 … 𝜎𝑟𝑢𝑟 0 … 0 𝑚×𝑛
𝑆𝑣1 … 𝑆𝑣𝑟 𝑆𝑣𝑟+1 … 𝑆𝑣𝑛 𝑚×𝑛 = 𝜎1𝑢1 … 𝜎𝑟𝑢𝑟 0 … 0 𝑚×𝑛

𝑆 𝑣1 … 𝑣𝑛 = 𝑢1 … 𝑢𝑚

𝜎1 ⋯ 0
⋮ ⋮
0 ⋯ 𝜎𝑟

0

0 0
𝑆𝑚×𝑛𝑉𝑛×𝑛 = 𝑈𝑚×𝑚Σ𝑚×𝑛

𝑆 = 𝑈Σ𝑉𝑇

Reduced SVD
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❑ what happens when A is not a square matrix?

❑ n > m
𝐴 = 𝑈Σ𝑉𝑇

=
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑚
⋮ ⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑚

0
⋱

0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑚

𝑇 ⋯
⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

We can instead rewrite the above as:
𝐴 = 𝑈Σ𝑅𝑉𝑅

𝑇

where 𝑉𝑅 is n x m matrix and Σ𝑅 is a m x m matrix

In general:
𝐴 = 𝑈𝑅Σ𝑅𝑉𝑅

𝑇

Reduced SVD
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𝑈𝑅 is a m x k matrix

Σ𝑅 is a k x k matrix            k = min(m, n)    
𝑉𝑅 is a n x k matrix

Now U and V are not orthogonal. 

But their columns are orthonormal. 



❑ m > n
𝐴 = 𝑈Σ𝑉𝑇

=
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ ⋮
⋯ 𝑢𝑚
⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

We can instead rewrite the above as:
𝐴 = 𝑈Σ𝑅𝑉𝑅

𝑇

where 𝑈𝑅 is m x n matrix and Σ𝑅 is a n x n matrix

Reduced SVD
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Now U and V are not orthogonal. 

But their columns are orthonormal. 



❑ Let’s take a look at the product of Σ𝑇Σ where Σ has the singular values of a 𝐴, a m x 
n matrix.

o m > n:

Σ𝑇Σ =

𝜎1
⋱

𝜎𝑛

0
⋱

0 𝑛×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

=
𝜎1
2

⋱
𝜎𝑛
2

𝑛×𝑛

o n > m:

Σ𝑇Σ =

𝜎1
⋱

𝜎𝑚
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑛×𝑚

𝜎1
⋱

𝜎𝑚

0
⋱

0 𝑚×𝑛

=

𝜎1
2

⋱
𝜎𝑚
2

0
⋱

0
0

⋱
0

0
⋱

0 𝑛×𝑛

Reduced SVD
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❑ Wide Matrix

Reduced SVD
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❑ Tall Matrix 

Reduced SVD
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❑ Assume 𝐴 with singular value decomposition 𝐴 = 𝑈Σ𝑉𝑇. Let’s 
take a look at the eigenpairs corresponding to 𝐴𝑇𝐴:

𝐴𝑇𝐴 = 𝑈Σ𝑉𝑇 𝑇 𝑈Σ𝑉𝑇

𝑉𝑇 𝑇 Σ 𝑇𝑈𝑇 𝑈Σ𝑉𝑇 = 𝑉Σ𝑇𝑈𝑇𝑈Σ𝑉𝑇 = 𝑉Σ𝑇Σ𝑉𝑇

Hence 𝐴𝑇𝐴 = 𝑉Σ2𝑉𝑇

❑ Recall that columns of 𝑉 are all linear independent (orthogonal matrix), then 
from diagonalization (𝐵 = 𝑋𝐷𝑋−1), we get:

o The columns of 𝑉 are the eigenvectors of the matrix 𝐴𝑇𝐴

o The diagonal entries of Σ2 are the eigenvalues of 𝐴𝑇𝐴

❑ Let’s call 𝜆 the eigenvalues of 𝐴𝑇𝐴, then 𝜎𝑖
2 = 𝜆𝑖

How can we compute an SVD of a matrix A?
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❑ In a similar way,
𝐴𝐴𝑇 = 𝑈Σ𝑉𝑇 𝑈Σ𝑉𝑇 𝑇

𝑈Σ𝑉𝑇 𝑉𝑇 𝑇 Σ 𝑇𝑈𝑇 = 𝑈Σ𝑉𝑇𝑉Σ𝑇𝑈𝑇 = 𝑈ΣΣ𝑇𝑈𝑇

Hence 𝐴𝐴𝑇 = 𝑈Σ2𝑈𝑇

❑ Recall that columns of 𝑈 are all linear independent (orthogonal matrix), then 
from diagonalization (𝐵 = 𝑋𝐷𝑋−1), we get:

o The columns of 𝑈 are the eigenvectors of the matrix 𝐴𝐴𝑇

How can we compute an SVD of a matrix A?
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1. Evaluate the n eigenvectors 𝑣𝑖 and eigenvalues 𝜆𝑖 of 𝐴𝑇𝐴

2. Make a matrix 𝑉 from the normalized vectors 𝑣𝑖 . The columns are called 
“right singular vectors”.

V =
⋮ ⋯ ⋮
𝑣1 ⋯ 𝑣𝑛
⋮ ⋯ ⋮

3. Make a diagonal matrix from the square roots of the eigenvalues.

Σ =

𝜎1
⋱

𝜎𝑛
𝜎𝑖= 𝜆𝑖 and 𝜎1 ≥ 𝜎2 ≥ ⋯

4. Find 𝑈:𝐴 = 𝑈Σ𝑉𝑇 ⇒ 𝑈Σ = 𝐴𝑉 ⇒ 𝑈 = 𝐴𝑉Σ−1. The columns are called 
“left singular values”.

How can we compute an SVD of a matrix A?
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How can we compute an SVD of a matrix A?
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Example

𝑆 =
1 −1
−2 2
2 −2

→ 𝑆𝑇𝑆 =
9 −9
−9 9

, 𝑟𝑎𝑛𝑘 𝑆 = 1

Δ 𝜆 = 𝜆2 − 18𝜆 = 0 ⇒ 𝜎1 = 18, 𝜎2 = 0 ⇒ 𝜮 =
𝟑 𝟐 𝟎
𝟎 𝟎
𝟎 𝟎

𝑣1 =
1/ 2

−1/ 2
, 𝑣2 =

1/ 2

1/ 2
⇒ 𝑽 =

𝟏

𝟐

𝟏 𝟏
−𝟏 𝟏

𝑆𝑣1 =

2/ 2

−4/ 2

4/ 2

⇒ 𝑢1 =
1

𝜎1
𝑆𝑣1 =

1

3 2

2/ 2

−4/ 2

4/ 2

=

1/3
−2/3
2/3

𝑢2 =

2/3
2/3
1/3

, 𝑢3 =

−2/3
1/3
2/3

⇒ 𝑼 =
𝟏

𝟑

𝟏 𝟐 −𝟐
−𝟐 𝟐 𝟏
𝟐 𝟏 𝟐

𝑆 =
1 −1
−2 2
2 −2

=
1

3

1 2 −2
−2 2 1
2 1 2

3 2 0
0 0
0 0

1

2

1 1
−1 1

= 𝑈Σ𝑉𝑇



❑ Unitary Freedom of PSD Decompositions
Suppose 𝐵, 𝐶 ∈ ℳ𝑚,𝑛 𝔽 . The following are equivalent:

a. There exists a unitary matrix 𝑈 ∈ ℳ𝑚 𝔽 such that 𝐶 = 𝑈𝐵,

b. 𝐵∗𝐵 = 𝐶∗𝐶,

c. 𝐵𝐯 . 𝐵𝐰 = C𝐯 . C𝐰 for all 𝐯,𝐰 ∈ 𝔽𝑛, and 

d. 𝐵𝐯 = C𝐯 for all 𝐯 ∈ 𝔽𝑛.

Lemma
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Example

3 2
−2 0

1 2 3
−1 0 1
3 2 1



❑ If 𝑚 ≠ 𝑛 then 𝐴∗𝐴, 𝐴𝐴∗ have different sizes, but they still have 
essentially the same eigenvalues—whichever one is larger just 
has some extra 0 eigenvalues.

❑ The same is actually true of AB and BA for any A and B.

❑ Proof SVD in another view!!

SVD Proof
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Review 
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Geometric Interpretation and the Fundamental Subspaces
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The product of a matrix’s singular
values equals the absolute value of
its determinant

𝑨 = 𝑼𝜮𝑽∗



❑ Suppose 𝐴 is a m x n rectangular matrix where m > n:

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ ⋮
⋯ 𝑢𝑚
⋯ ⋮ 𝑚×𝑚

𝜎1
⋱

𝜎𝑛
0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0 𝑚×𝑛

⋯ 𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝑣𝑛

𝑇 ⋯
𝑛×𝑛

𝐴 =
⋮ ⋯ ⋮
𝑢1 ⋯ 𝑢𝑛
⋮ ⋯ ⋮

⋯ 𝜎1𝑣1
𝑇 ⋯

⋮ ⋮ ⋮
⋯ 𝜎𝑛𝑣𝑛

𝑇 ⋯
= 𝜎1𝑢1𝑣1

𝑇 + 𝜎2𝑢2𝑣2
𝑇+ … + 𝜎𝑛𝑢𝑛𝑣𝑛

𝑇

𝐴 =

𝑖=1

𝑛

𝜎𝑖𝑢𝑖𝑣𝑖
𝑇

𝐴1 = 𝜎1𝑢1𝑣1
𝑇 what is rank(𝐴1) = ?

In general, rank(𝐴𝑘) = 𝑘

Determining the rank of a matrix
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❑ Let 𝐴 ∈ ℳ𝑚,𝑛 be a matrix with rank(A) = r and the singular value 
decomposition 𝐴 = 𝑈Σ𝑉𝑇, where

𝑈 = 𝑢1 𝑢2 … | 𝑢𝑚 and V= 𝑣1 𝑣2 … | 𝑣𝑛

Then
a. {𝑢1, 𝑢2, … , 𝑢𝑟} is an orthonormal basis of range(𝐴),

b. 𝑢𝑟+1, 𝑢𝑟+2, … , 𝑢𝑚 is an orthonormal basis of null(𝐴∗),

c. 𝑣1, 𝑣2, … , 𝑣𝑟 is an orthonormal basis of range(𝐴∗), and

d. 𝑣𝑟+1, 𝑣𝑟+2, … , 𝑣𝑛 is an orthonormal basis of null(𝐴)

Conclusion
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𝐴 = 𝑈Σ𝑉∗

𝐴∗ = 𝑉Σ∗𝑈∗

𝐴−1 = 𝑉Σ−1𝑈∗

A Geometric Interpretation
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Applications
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❑ Suppose 𝔽 = ℝ or 𝔽 = ℂ, and 𝐴 ∈ ℳ𝑚,𝑛(𝔽) has rank(𝐴) = 𝑟. There exist 

orthonormal sets of vectors 𝑢𝑗 𝑗=1

𝑟
⊂ 𝔽𝑚 and 𝑣𝑗 𝑗=1

𝑟
⊂ 𝔽𝑛 such that

𝐴 =

𝑖=1

𝑟

𝜎𝑖𝑢𝑖𝑣𝑖
∗,

where 𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑟 > 0 are the non-zero singular values of A.

Orthogonal Rank-One Sum Decomposition
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❑ Suppose you want to find best rank-k approximation to A
o Answer: set all but the largest k singular values to zero

❑ Can form compact representation by eliminating columns of U
and V corresponding to zeroed Σi

SVD and Matrix Similarity
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Application: Dimensionality Reduction
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Application: Dimensionality Reduction
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Application: Dimensionality Reduction
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Application: Dimensionality Reduction
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Image

CE282: Linear Algebra Hamid R. Rabiee & Maryam Ramezani 43



❑ If 𝐴 ∈ ℳ𝑛 is positive semidefinite then its singular values equals its 

eigenvalues.

SVD and PSD
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❑ Why is SVD so useful?

❑ 𝐴−1 = 𝑉Σ−1𝑈−1 = 𝑉Σ−1𝑈𝑇

o Using fact that inverse = transpose for orthogonal matrices

o Since Σ is diagonal, Σ−1 also diagonal with reciprocals of entries of Σ

❑ This fails when some Σ𝑖 are 0
o It’s supposed to fail – singular matrix

❑ Pseudoinverse: if Σ𝑖 = 0, set 
1

Σ𝑖
to 0 (!)

o “Closest” matrix to inverse

o Defined for all (even non-square, singular, etc.) matrices

o Equal to 𝐴𝑇𝐴 −1𝐴𝑇 if 𝐴𝑇𝐴 invertible

SVD and Inverses
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❑ Problem:
if A is rank-deficient, Σ is not invertible.

❑ How to fix it:
Define the Pseudo Inverse

❑ Pseudo Inverse of a diagonal matrix:

Σ+ 𝑖 = ൞

1

𝜎𝑖
, 𝑖𝑓 𝜎𝑖 ≠ 0

0, 𝑖𝑓𝜎𝑖 = 0

❑ Pseudo Inverse of a matrix A:
𝐴+ = 𝑉Σ+𝑈𝑇

Pseudo Inverse
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❑ If a matrix A has the singular value decomposition
𝐴 = 𝑈𝑊𝑉𝑇

then the pseudo-inverse or Moore-Penrose inverse of A is

𝐴+ = 𝑉𝑇𝑊−1𝑈
o If A is ‘tall’ (m > n) and has full rank

𝐴+ = 𝐴𝑇𝐴 −1𝐴𝑇 (it gives the least-squares 
solution 𝑥𝑙𝑠𝑞 = 𝐴+𝑏)

o If A is ‘short’ (n > m) and has full rank
𝐴+ = 𝐴𝑇 𝐴𝐴𝑇 −1 (it gives the least-norm solution 𝑥𝑙−𝑛

= 𝐴+𝑏)

o In general, 𝑥𝑝𝑖𝑛𝑣 = 𝐴+𝑏 is the minimum-norm, least-square solution.

Pseudo Inverse
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❑ One common definition for the norm of a matrix is the Frobenius
norm:

𝐴 𝐹
2 = 

𝑖=1:𝑚



𝑗=1:𝑛

𝑎𝑖𝑗
2

❑ Frobenius norm can be computed from SVD

𝐴 F
2 = 

𝑖=1:𝑝

∑𝑖
2 𝑤ℎ𝑒𝑟𝑒 𝑝 = min(𝑛,𝑚)

❑ So changes to a matrix can be evaluated by looking at changes 
to singular values

SVD and Norm
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❑ 2-norm:

SVD and Norm
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❑ .

❑ Invert the diagonal entries in D that are nonzero, but leave the 
other diagonal entries alone as zeros.

SVD and Least Square
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