

Singular Values and Singular Vectors

Linear Algebra

Department of Computer Engineering

Sharif University of Technology

Hamid R. Rabiee rabiee@sharif.edu

Maryam Ramezani <u>maryam.ramezani@sharif.edu</u>

Introduction

Introduction

range null space eigen value eigen vector transpose inverse symmetric matrix orthogonal matrix psd matrix

PCA
low-rank approximation
TLS minimization
pseudoinverse
separable models
optimal rotation
...

Introduction

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Singular Value

Singular value and eigenvalue

\square $S_{m \times n}$ Non-Square!!

$$\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_{m-1} \geq \sigma_m$$

Example

$$S = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}$$

$$S^{T}S = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix} \Rightarrow \lambda(S^{T}S) = \{360, 90, 0\}$$
$$\Rightarrow \begin{cases} \sigma_{1} = \sqrt{360} = 6\sqrt{10} \\ \sigma_{2} = \sqrt{90} = 3\sqrt{10} \\ \sigma_{3} = 0 \end{cases}$$

Singular value and eigenvector

Theorem

 $\{v_1, ..., v_n\}$ are orthonormal eigenvectors of matrix S^TS then singular values of matrix S are norm of Sv_i vectors:

$$||Sv_i|| = \sigma_i$$

Proof?

Singular value and eigenvector

Example

$$S = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} \rightarrow S^T S = \begin{bmatrix} 80 & 100 & 40 \\ 100 & 170 & 140 \\ 40 & 140 & 200 \end{bmatrix} \rightarrow \sigma_1 = \sqrt{360}, \sigma_2 = \sqrt{90}, \sigma_3 = 0$$

$$v_{1} = \begin{bmatrix} 1/3 \\ 2/3 \\ 2/3 \end{bmatrix}, v_{2} = \begin{bmatrix} -2/3 \\ -1/3 \\ 2/3 \end{bmatrix}, v_{3} = \begin{bmatrix} 2/3 \\ -2/3 \\ 1/3 \end{bmatrix}$$

$$Sv_{1} = \begin{bmatrix} 18 \\ 6 \end{bmatrix} \Rightarrow ||Sv_{1}|| = \sqrt{18^{2} + 6^{2}} = \sigma_{1}$$

$$Sv_{2} = \begin{bmatrix} 3 \\ -9 \end{bmatrix} \Rightarrow ||Sv_{2}|| = \sqrt{3^{2} + (-9)^{2}} = \sigma_{2}$$

$$Sv_{3} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow ||Sv_{3}|| = 0 = \sigma_{3}$$

Singular value and Rank

Theorem

 $\{v_1, \dots, v_n\}$ are orthonormal eigenvectors of matrix S^TS and S has r non-zero singular value:

$$\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$$
, $\sigma_{r+1} = \cdots = \sigma_n = 0$

 $\{Sv_1, ..., Sv_r\}$ is a orthogonal basis for range of S

$$rank(S)=r$$

Rank of Matrix = Number of nonzero singular values

How to find $\{u_1, ..., u_r\}$ is a orthonormal basis for range of S

SVD

Singular Value Decomposition (SVD)

- □ Given any $m \times n$ matrix **A**, algorithm to find matrices **U**, **V**, and \sum such that (always exists)

U is $m \times m$ and orthogonal (always real)

 \sum is $m \times n$ and diagonal with non-negative (always real) called <u>singular</u> values.

V is $n \times n$ and orthogonal (always real)

- \Box Columns of U are eigenvectors of AA^T (called the left singular vectors).
- \Box Columns of V are eigenvectors of A^TA (called the right singular vectors).
- \Box The non-zero singular vectors are the positive square roots of non-zero eigenvalues of AA^T or A^TA .

SVD Introduction

 Generalization of the spectral decomposition that applies to all matrices, rather than just normal matrices.

Applications:

- Compute the size of a matrix (in a way that typically makes more sense than norm)
- o Provide a new geometric interpretation of linear transformations
- Solve optimization problems
- Construct an "almost inverse" for matrices that do not have an inverse.

SVD Comparison

SVD	Diagonalization	Spectral Decomposition
applies to every single matrix (even rectangular ones).	only applies to matrices with a basis of eigenvectors	only applies to normal matrices
matrix ∑ in the middle of the SVD is diagonal (and even has real nonnegative entries)	do not guarantee an entrywise non-negative matrix	do not guarantee an entrywise non-negative matrix
It requires two unitary matrices U and V	only required one invertible matrix	only required one unitary matrix

SVD

- \Box The Σ_i are called the singular values of **A**
- \Box If **A** is singular, some of the Σ_i will be 0
- \Box In general $rank(A) = number of nonzero <math>\sum_{i}$
- \square SVD is mostly unique (up to permutation of singular values, or if some Σ_i are equal)

SVD for Square Matrix

The SVD is a factorization of a m x n matrix into $A = U\Sigma V^T$

Where U is a m x m orthogonal matrix, V^T is a n x n orthogonal matrix and Σ is a m x n diagonal matrix.

For a square matrix (m=n):

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}$$

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}^T$$

$$[Sv_1 \quad \dots \quad Sv_r \quad 0 \quad \dots \quad 0]_{m \times n} = [\sigma_1 u_1 \quad \dots \quad \sigma_r u_r \quad 0 \quad \dots \quad 0]_{m \times n}$$

$$[Sv_1 \quad \dots \quad Sv_r \quad Sv_{r+1} \quad \dots \quad Sv_n]_{m \times n} = [\sigma_1 u_1 \quad \dots \quad \sigma_r u_r \quad 0 \quad \dots \quad 0]_{m \times n}$$

$$S[v_1 \quad \dots \quad v_n] = \begin{bmatrix} u_1 & \dots & u_m \end{bmatrix} \begin{bmatrix} \sigma_1 & \dots & 0 \\ \vdots & & \vdots & 0 \\ 0 & \dots & \sigma_r & 0 \end{bmatrix}$$

$$S_{m \times n} V_{n \times n} = U_{m \times m} \Sigma_{m \times n}$$

$$S = U\Sigma V^T$$

what happens when A is not a square matrix?

$$= \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_m \\ \vdots & \cdots & \vdots \end{pmatrix}_{m \times m} \begin{pmatrix} \sigma_1 & & & 0 \\ & \ddots & & & \ddots \\ & & \sigma_m & & & 0 \end{pmatrix}_{m \times n} \begin{pmatrix} \cdots & v_1 & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_m^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}$$

$$0)_{m\times n} \begin{pmatrix} \vdots & \vdots & \vdots \\ \cdots & v_m^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}_{n\times n}$$

We can instead rewrite the above as:

$$A = U\Sigma_R V_R^T$$

where V_R is n x m matrix and Σ_R is a m x m matrix In general:

$$A = U_R \Sigma_R V_R^T$$

Now U and V are not orthogonal. But their columns are orthonormal.

 U_R is a m x k matrix k = min(m, n) Σ_R is a k x k matrix V_R is a n x k matrix

We can instead rewrite the above as:

$$A = U\Sigma_R V_R^T \longrightarrow$$

 $A = U\Sigma_R V_R^T$ Now U and V are not orthogonal. But their columns are orthonormal.

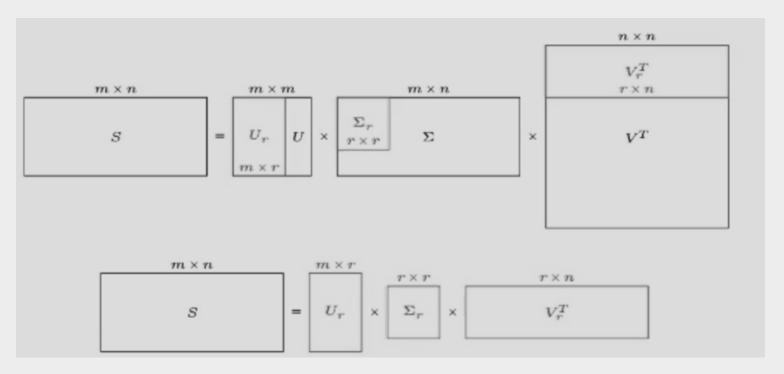
where U_R is m x n matrix and Σ_R is a n x n matrix

Let's take a look at the product of $\Sigma^T \Sigma$ where Σ has the singular values of a A, a m x n matrix.

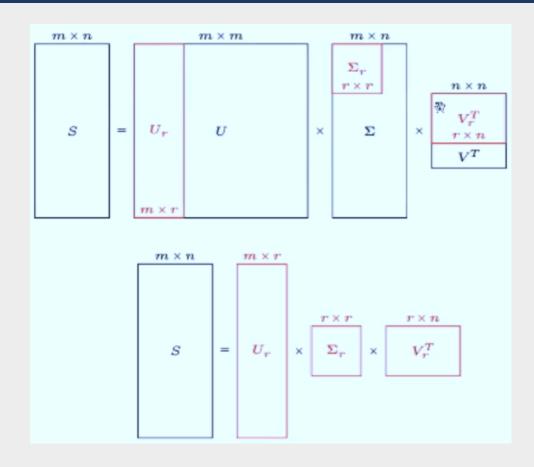
$$\Sigma^{T} \Sigma = \begin{pmatrix} \sigma_{1} & & & & & \\ & \ddots & & & & \\ & & \sigma_{n} & & & & \end{pmatrix}_{n \times m} \begin{pmatrix} \sigma_{1} & & & & \\ & \ddots & & & \\ & & \sigma_{n} & & & \\ & \vdots & \ddots & \vdots & \\ & 0 & \cdots & 0 & \end{pmatrix}_{m \times n} = \begin{pmatrix} \sigma_{1}^{2} & & & \\ & \ddots & & \\ & & \sigma_{n}^{2} \end{pmatrix}_{n \times n}$$

 \circ n \gt m:

■ Wide Matrix



□ Tall Matrix



 \square Assume A with singular value decomposition $A = U\Sigma V^T$. Let's take a look at the eigenpairs corresponding to A^TA :

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T})$$
$$(V^{T})^{T}(\Sigma)^{T}U^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T} = V\Sigma^{T}\Sigma V^{T}$$

Hence $A^T A = V \Sigma^2 V^T$

- Recall that columns of V are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:
 - \circ The columns of V are the eigenvectors of the matrix A^TA
 - \circ The diagonal entries of Σ^2 are the eigenvalues of A^TA
- \Box Let's call λ the eigenvalues of A^TA , then $\sigma_i^2 = \lambda_i$

☐ In a similar way,

$$AA^{T} = (U\Sigma V^{T})(U\Sigma V^{T})^{T}$$
$$(U\Sigma V^{T})(V^{T})^{T}(\Sigma)^{T}U^{T} = U\Sigma V^{T}V\Sigma^{T}U^{T} = U\Sigma\Sigma^{T}U^{T}$$

Hence $AA^T = U\Sigma^2U^T$

- Recall that columns of U are all linear independent (orthogonal matrix), then from diagonalization ($B = XDX^{-1}$), we get:
 - $_{\circ}$ The columns of U are the eigenvectors of the matrix AA^{T}

- 1. Evaluate the n eigenvectors v_i and eigenvalues λ_i of A^TA
- 2. Make a matrix V from the normalized vectors v_i . The columns are called "right singular vectors".

$$\mathbf{V} = \begin{pmatrix} \vdots & \cdots & \vdots \\ v_1 & \cdots & v_n \\ \vdots & \cdots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\Sigma = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and } \sigma_1 \ge \sigma_2 \ge \cdots$$

4. Find $U: A = U\Sigma V^T \Rightarrow U\Sigma = AV \Rightarrow U = AV\Sigma^{-1}$. The columns are called "left singular values".

Example

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} \rightarrow S^{T}S = \begin{bmatrix} 9 & -9 \\ -9 & 9 \end{bmatrix}, rank(S) = 1$$

$$\Delta(\lambda) = \lambda^{2} - 18\lambda = 0 \Rightarrow \sigma_{1} = \sqrt{18}, \sigma_{2} = 0 \Rightarrow \Sigma = \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$v_{1} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}, v_{2} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix} \Rightarrow V = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

$$Sv_{1} = \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} \Rightarrow u_{1} = \frac{1}{\sigma_{1}} Sv_{1} = \frac{1}{3\sqrt{2}} \begin{bmatrix} 2/\sqrt{2} \\ -4/\sqrt{2} \\ 4/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/3 \\ -2/3 \\ 2/3 \end{bmatrix}$$

$$u_{2} = \begin{bmatrix} 2/3 \\ 2/3 \\ 1/3 \end{bmatrix}, u_{3} = \begin{bmatrix} -2/3 \\ 1/3 \\ 2/3 \end{bmatrix} \Rightarrow U = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix}$$

$$S = \begin{bmatrix} 1 & -1 \\ -2 & 2 \\ 2 & -2 \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 2 & -2 \\ -2 & 2 & 1 \\ 2 & 1 & 2 \end{bmatrix} \begin{bmatrix} 3\sqrt{2} & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix} = U\Sigma V^{T}$$

Lemma

■ Unitary Freedom of PSD Decompositions

Suppose $B, C \in \mathcal{M}_{m,n}(\mathbb{F})$. The following are equivalent:

- a. There exists a unitary matrix $U \in \mathcal{M}_m(\mathbb{F})$ such that C = UB,
- b. $B^*B = C^*C$,
- c. $(B\mathbf{v}).(B\mathbf{w}) = (C\mathbf{v}).(C\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in \mathbb{F}^n$, and
- d. $||B\mathbf{v}|| = ||C\mathbf{v}||$ for all $\mathbf{v} \in \mathbb{F}^n$.

Example

$$\begin{bmatrix} 3 & 2 \\ -2 & 0 \end{bmatrix}$$

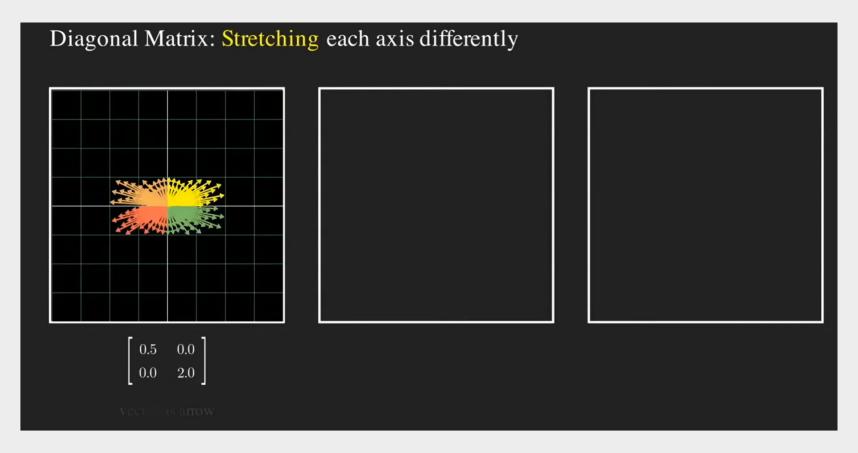
$$\begin{bmatrix} 1 & 2 & 3 \\ -1 & 0 & 1 \\ 3 & 2 & 1 \end{bmatrix}$$

SVD Proof

- If $m \neq n$ then A^*A , AA^* have different sizes, but they still have essentially the same eigenvalues—whichever one is larger just has some extra 0 eigenvalues.
- ☐ The same is actually true of AB and BA for any A and B.

□ Proof SVD in another view!!

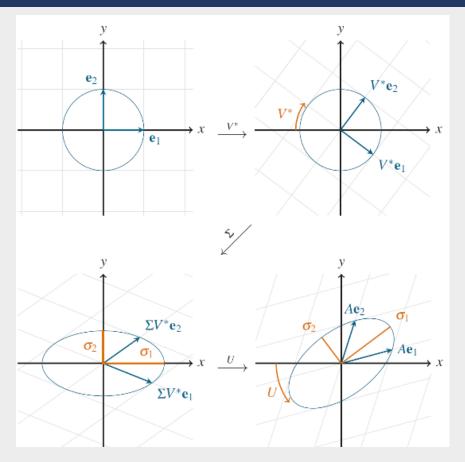
Review



Geometric Interpretation and the Fundamental Subspaces

$$A = U\Sigma V^*$$

The product of a matrix's singular values equals the absolute value of its determinant



Determining the rank of a matrix

Suppose A is a m x n rectangular matrix where m > n:

$$A = \begin{pmatrix} \vdots & \cdots & \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n & \cdots & u_m \\ \vdots & \cdots & \vdots & \cdots & \vdots \end{pmatrix}_{m \times m} \begin{pmatrix} \sigma_1 \\ & \ddots \\ & & \sigma_n \\ 0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0 \end{pmatrix}_{m \times n} \begin{pmatrix} \cdots & v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \cdots & v_n^T & \cdots \end{pmatrix}_{n \times n}$$

$$A = \begin{pmatrix} \vdots & \cdots & \vdots \\ u_1 & \cdots & u_n \\ \vdots & \cdots & \vdots \end{pmatrix} \begin{pmatrix} \cdots & \sigma_1 v_1^T & \cdots \\ \vdots & \vdots & \vdots \\ \vdots & \cdots & \vdots \end{pmatrix} = \sigma_1 u_1 v_1^T + \sigma_2 u_2 v_2^T + \cdots + \sigma_n u_n v_n^T$$

$$A = \sum_{i=1}^n \sigma_i u_i v_i^T$$

$$A_1 = \sigma_1 u_1 v_1^T \text{ what is } \operatorname{rank}(A_1) = ?$$

In general, rank $(A_k) = k$

Conclusion

Let $A \in \mathcal{M}_{m,n}$ be a matrix with rank(A) = r and the singular value decomposition $A = U\Sigma V^T$, where

$$U = [u_1 \mid u_2 \mid ... \mid u_m]$$
 and $V = [v_1 \mid v_2 \mid ... \mid v_n]$

Then

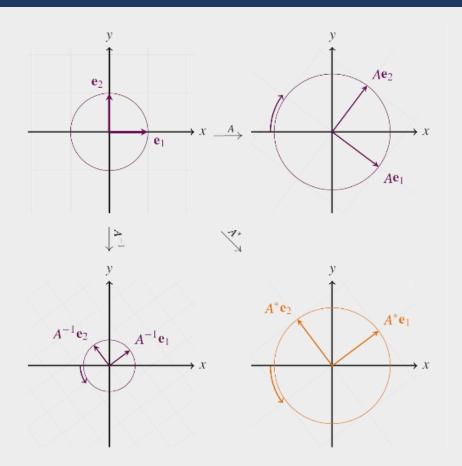
- a. $\{u_1, u_2, ..., u_r\}$ is an orthonormal basis of range(A),
- b. $\{u_{r+1}, u_{r+2}, \dots, u_m\}$ is an orthonormal basis of null (A^*) ,
- c. $\{v_1, v_2, ..., v_r\}$ is an orthonormal basis of range (A^*) , and
- d. $\{v_{r+1}, v_{r+2}, ..., v_n\}$ is an orthonormal basis of null(A)

A Geometric Interpretation

$$A = U\Sigma V^*$$

$$A^* = V\Sigma^*U^*$$

$$A^{-1} = V\Sigma^{-1}U^*$$



Applications

Orthogonal Rank-One Sum Decomposition

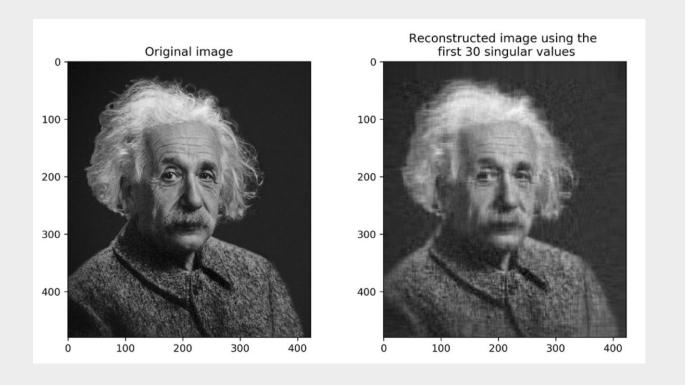
Suppose $\mathbb{F} = \mathbb{R}$ or $\mathbb{F} = \mathbb{C}$, and $A \in \mathcal{M}_{m,n}(\mathbb{F})$ has rank(A) = r. There exist orthonormal sets of vectors $\{u_j\}_{j=1}^r \subset \mathbb{F}^m$ and $\{v_j\}_{j=1}^r \subset \mathbb{F}^n$ such that

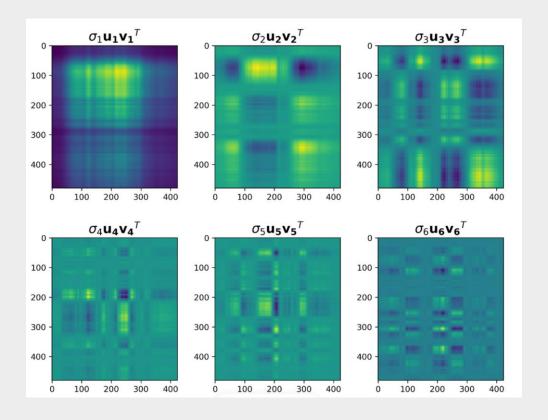
$$A = \sum_{i=1}^{r} \sigma_i u_i v_i^*,$$

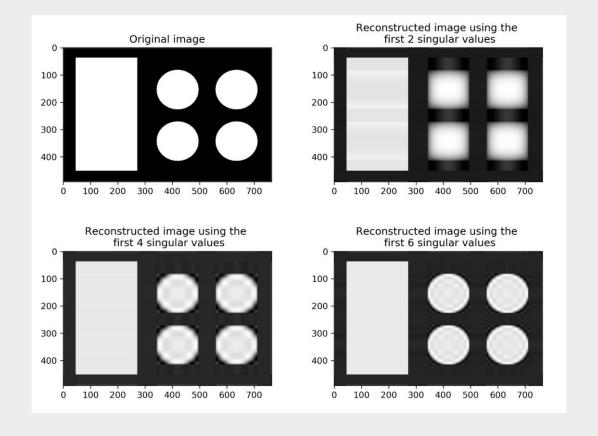
where $\sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r > 0$ are the non-zero singular values of A.

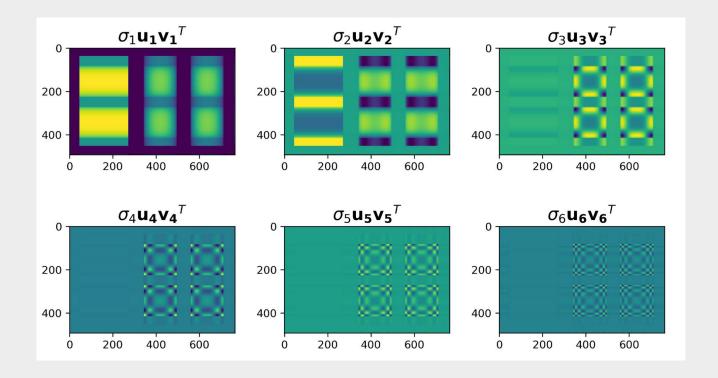
SVD and Matrix Similarity

- \square Suppose you want to find best rank-k approximation to **A**
 - o Answer: set all but the largest k singular values to zero
- fill Can form compact representation by eliminating columns of f U and f V corresponding to zeroed Σ_i









Image

Low Rank Approximation of Image

SVD and PSD

□ If $A \in \mathcal{M}_n$ is positive semidefinite then its singular values equals its eigenvalues.

SVD and Inverses

- Why is SVD so useful?
- $\Box A^{-1} = V \Sigma^{-1} U^{-1} = V \Sigma^{-1} U^{T}$
 - Using fact that inverse = transpose for orthogonal matrices
 - $_{\circ}$ Since Σ is diagonal, Σ^{-1} also diagonal with reciprocals of entries of Σ
- \Box This fails when some Σ_i are 0
 - o It's supposed to fail singular matrix
- \square Pseudoinverse: if $\Sigma_i = 0$, set $\frac{1}{\Sigma_i}$ to 0 (!)
 - "Closest" matrix to inverse
 - Defined for all (even non-square, singular, etc.) matrices
 - \circ Equal to $(A^TA)^{-1}A^T$ if A^TA invertible

Pseudo Inverse

□ Problem:

if A is rank-deficient, Σ is not invertible.

How to fix it:

Define the Pseudo Inverse

□ Pseudo Inverse of a diagonal matrix:

$$(\Sigma^{+})_{i} = \begin{cases} \frac{1}{\sigma_{i}}, & if \ \sigma_{i} \neq 0 \\ 0, & if \ \sigma_{i} = 0 \end{cases}$$

□ Pseudo Inverse of a matrix A:

$$A^+ = V \Sigma^+ U^T$$

Pseudo Inverse

☐ If a matrix A has the singular value decomposition $A = UWV^T$

then the pseudo-inverse or Moore-Penrose inverse of A is

$$A^+ = V^T W^{-1} U$$

- o If A is 'tall' (m > n) and has full rank $A^+ = (A^TA)^{-1}A^T \qquad \qquad \text{(it gives the least-squares solution } x_{lsq} = A^+b)$
- o If A is 'short' (n > m) and has full rank $A^+ = A^T (AA^T)^{-1} \qquad \qquad \text{(it gives the least-norm solution } x_{l-n} \\ = A^+b)$
- \circ In general, $x_{pinv} = A^+b$ is the minimum-norm, least-square solution.

SVD and Norm

One common definition for the norm of a matrix is the Frobenius norm:

$$||A||_F^2 = \sum_{i=1:m} \sum_{j=1:n} a_{ij}^2$$

□ Frobenius norm can be computed from SVD

$$||A||_{\mathrm{F}}^2 = \sum_{i=1:n} \sum_{i=1}^{2} where \ p = \min(n, m)$$

 So changes to a matrix can be evaluated by looking at changes to singular values

SVD and Norm

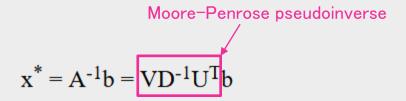
□ 2-norm:

$$||A||_2 = \sup_{x \neq 0} \frac{||Ax||_2}{||x||_2} = \sigma_1$$

SVD and Least Square

$$\Box x^* = A^{-1}b = (UDV^T)^{-1}b,$$

$$(UDV^{T})^{-1} = V^{-T} D^{-1} U^{-1}$$



□ Invert the diagonal entries in D that are nonzero, but leave the other diagonal entries alone as zeros.